Lattice-supersolid phase of strongly correlated bosons in an optical cavity

Yongqiang Li,1,2 Liang He,1 and Walter Hofstetter1

1Institut für Theoretische Physik, Goethe-Universität, 60438 Frankfurt am Main, Germany
2Department of Physics, National University of Defense Technology, Changsha 410073, People’s Republic of China

We numerically simulate strongly correlated ultracold bosons coupled to a high-finesse cavity field, pumped by a laser beam in the transverse direction. Assuming a weak classical optical lattice added in the cavity direction, we model this system by a generalized Bose-Hubbard model, which is solved by means of bosonic dynamical mean-field theory. The complete phase diagram is established, which contains two novel self-organized quantum phases, lattice supersolid and checkerboard solid, in addition to conventional phases such as superfluid and Mott insulator. At finite but low temperature, thermal fluctuations are found to enhance the buildup of the self-organized phases. We demonstrate that cavity-mediated long-range interactions can give rise to stable lattice supersolid and checkerboard solid phases even in the regime of strong s-wave scattering. In the presence of a harmonic trap, we discuss coexistence of these self-organized phases, as relevant to experiments.

DOI: 10.1103/PhysRevA.87.051604 PACS number(s): 67.85.Hj, 05.30.Jp, 05.30.Rt, 37.30.+i

Experimental realizations of atomic many-body systems coupled to a high-finesse cavity have recently attracted a large amount of attention [1]. In particular, the self-organized phase of atoms induced by coherent scattering between pump laser and cavity mode has been predicted theoretically [2], and confirmed experimentally for laser-cooled atoms in a transversally pumped cavity [3]. However, only recently it has become possible to combine a high-finesse cavity with an ultracold quantum gas in the strong-coupling regime and to experimentally investigate properties of a Bose-Einstein condensate (BEC) in an optical cavity [4–7]. A phase transition from a normal to self-organized phase in an open system has been realized [8], and a lifetime up to 10 ms of the self-organized phase has been achieved which indicates a steady state. Up to now, these experiments have, however, focused only on weakly interacting condensates. On the theory side, there is a lack of quantitative predictions for strongly correlated bosons coupled to an optical cavity, even though an extended Bose-Hubbard model has been derived [9,10] which describes the ultracold gas trapped in a periodic optical potential generated by the high-finesse cavity. Recently, theoretical studies of the BEC-cavity system have predicted that the ground state can be Mott insulating with finite photon excitations of the cavity mode [11,12]. However, the robustness of this self-organized phase against strong contact interactions, finite temperature, and the inhomogeneity induced by an external trap remains an important open issue.

To bridge this gap, here we numerically investigate the buildup of self-organized phases in ultracold bosonic gases coupled to a single-mode cavity field, pumped by a laser beam in the transverse direction. This setup is similar to a two-dimensional (2D) classical optical lattice but with a quantized field in the cavity direction. Since the cavity field mediates long-range interactions between atoms [13–15], we investigate the system by means of real-space bosonic dynamical mean-field theory (RBDMFT) which captures both strong correlations and spatial inhomogeneity as well as arbitrary long-range order in a unified framework [16].

Motivated by the recent experiment [8], we consider a system of ultracold 87Rb atoms with natural s-wave scattering length $a_s = 5.77$ nm and atomic transition wavelength $\lambda = 780.2$ nm, which is driven by a linearly polarized standing-wave laser with a red-detuned wave length $\lambda_R = 784.5$ nm in the direction perpendicular to the cavity axis. The setup of our simulation consists of the optical cavity in the x direction, driven by a pump laser in the z direction, and a strong confinement freezing the motional degree of freedom of the atoms in the third direction [17]. We choose the cavity decay rate as $\kappa = 3000\omega_R$ which is close to the experimental value of $\kappa = 2\pi \times 1.3$ MHz [8], where ω_R is the frequency corresponding to the recoil energy. $E_R = h\omega_R = h^2/(2m\lambda_R^2)$ ($\sim 2\pi \times 3.8$ kHz). We choose the light shift as $\delta_0 = g_0^2/\Delta_a = -0.1\omega_R$, which leads to an atom-cavity coupling strength g_0 two orders of magnitude larger than the cavity decay rate κ and thus implies that the system is in the strong-coupling regime of cavity QED [7], where Δ_a denotes the atom-pump detuning. This system can be described by an extended Bose-Hubbard model [9,10], where, for generality, a weak classical optical lattice is added in the cavity direction. We further assume the cavity mode to be in a coherent state to simplify the atom-cavity coupling, which is in good agreement with experimental results [8]. Within this approximation, the cavity mode is described by a complex amplitude α, and the parameters of the extended Bose-Hubbard model only depend on the average photon numbers. We thus finally obtain the lowest-band effective Hamiltonian employed in the following calculations:

$$\hat{H} = -\sum_{\langle i,j \rangle} J_{x(\langle z \rangle)} \hat{b}_i^\dagger \hat{b}_j + \frac{1}{2} U \sum_i \hat{b}_i^\dagger \hat{b}_i^\dagger \hat{b}_i \hat{b}_i + 2\text{Re}[\alpha] \gamma_{\text{eff}} J_0 \sum_i (-1)^i \hat{b}_i^\dagger \hat{b}_i + \sum_i (\mu V_i - \tilde{\mu}) \hat{b}_i^\dagger \hat{b}_i \label{eq:hamiltonian}$$

where \hat{b}_i^\dagger (\hat{b}_i) denotes the bosonic creation (annihilation) operator for a Wannier state at site i. Here \hat{J}_x (\hat{J}_z) is the effective nearest-neighbor hopping amplitude in the x (z) direction, with the hopping in the x direction determined by the cavity mode, $\tilde{\mu}$ is the effective chemical potential, $V_i = V_{\text{trap}} i^2$ with the strength V_{trap} of the external harmonic trap, and $U = 4\pi a_s \hbar^2/m$ is the Hubbard interaction strength. The
cavity mode amplitude \(\alpha = \eta_{\text{eff}} |J'_0| \sum_{i} (-1)^i \langle \hat{b}_i | \hat{b}_i \rangle |(\Delta'_c + i\kappa)| \) [18] with \(\Delta'_c = \Delta_c - U_0 |J'_0| \sum_{i} \langle \hat{b}_i | \hat{b}_i \rangle + J_i^2 \sum_{i,j} \langle \hat{b}_i | \hat{b}_j \rangle \) is determined self-consistently by the density distribution of the atoms. \(\hat{b}_i, \hat{J}'_{0}, \hat{J}_i \) denote the on-site single-particle matrix elements of the potential generated by the cavity mode, by scattering between pump laser and cavity mode via single atoms, and the first-order tunneling matrix element between nearest-neighbor sites of the cavity mode standing wave, respectively. \(\eta_{\text{eff}} = -\sqrt{|V_p V_0|} \) denotes the effective pump strength into the cavity through atomic scattering. \(\Delta_c \) the in-cavity-pump detuning, and \(N_p (V_p = V_c) \) the depth of the standing-wave potential created by the pump laser in the \(z \) direction. The hopping amplitudes in the \(x \) and \(z \) direction for nearest neighbors are given by \(\hat{J}_{x,z}/E_R = (4/\sqrt{\pi})(V_{x,z}/E_R)^{3/4} \exp(-2\sqrt{V_{x,z}/E_R}) \) and the Hubbard interaction parameter by \(U/E_R = 4\sqrt{2\pi}(\alpha_s/\lambda R)(V_x V_y/E_R)^{3/4} \) [19], where \(V_x (V_y, V_z) \) is the optical lattice depth in the \(x \) (\(y, z \)) direction and \(V_c \) is self-consistently determined by the cavity mode. For the on-site coupling matrix elements we use a Gaussian approximation consistently determined by the cavity mode. For the on-site scattering length, which indicates that more pump laser power is needed to drive the system into the self-organized phase. We also investigate the effect of finite temperature on the two phases in the diagram: superfluid (SF) and supersolid (SS). Different markers correspond to different sizes of the system in our calculations \([N_{\text{tot}} = 12 \times 12 (\ast), N_{\text{tot}} = 16 \times 16, N_{\text{tot}} = 20 \times 20 (\odot), \) and \(N_{\text{tot}} = 24 \times 24 (\times)\). The cavity decay rate is set to \(\kappa = 300 E_R \) and the light shift is \(U_0 = -0.1 E_R \). Inset: Rescaled critical strength \(N_{\text{tot}} V_p^2 \) of the standing-wave pump laser vs temperature at fixed cavity detuning \(\Delta_c = -1000 E_R \) obtained from calculations on a \(16 \times 16 \) lattice.
perfluid and supersolid. The sensitivity to on-site interactions strongly shift the phase boundary between superfluid transition [23].

The blue curve corresponds to the filling dependence of checkerboard order Φ at zero temperature; the green (lower) and the red (upper) triangles denote where the system is in the Mott insulator and checkerboard solid, respectively. (a)–(d): Density distribution of superfluid, supersolid, Mott insulator, and checkerboard solid, respectively, in real space (left) and in quasimomentum space (right), corresponding to the densities marked by the red arrows in the main figure. Other parameters are $\Delta_c = -500E_R$, $\kappa = 300E_R$, $U_0 = -0.1E_R$, and $V_p = 15E_R$. Inset: Melting of the supersolid phase with increasing temperature at fixed filling $N_{tot}/N_{lat} = 0.68$, where the green (circle symbols) and red (star symbols) curves indicate the temperature dependence of the superfluid order ϕ and checkerboard order Φ.

FIG. 2. (Color online) Properties of the self-organized phases of strongly interacting bosons on a square ($N_{lat} = 16 \times 16$) lattice. At high temperature, thermal fluctuations tend to smear out the self-organized density pattern, and as a result, more power is needed to stabilize it. Interestingly, the maximum of checkerboard order occurs when the superfluid order vanishes. A similar effect in a different model has been observed in Ref. [22]. Note that the long-range order ϕ is not at $T > 0$ in two dimensions is a mean-field artifact in the thermodynamical limit, while in reality, the system exhibits a Kosterlitz-Thouless transition [23].

From the previous discussion, we conclude that on-site interactions strongly shift the phase boundary between superfluid and supersolid. The sensitivity to on-site interactions has been also observed experimentally in Ref. [8]. We now investigate this effect in detail at different fillings on a square ($N_{lat} = 16 \times 16$) lattice. We choose a cavity detuning $\Delta_c = -500E_R$, a scattering length of $2.5a_0$, and a lattice depth $V_p = 15E_R$ of the standing-wave pump laser, motivated by the recent experiment [8]. Figure 2 displays the resulting checkerboard order Φ (blue line) as a function of filling, where four possible phases of the BEC-cavity system are observed. Panels (a)–(d) in Fig. 2 show the density distribution in real space (left) and in quasimomentum space (right): (a) superfluid phase ($\phi \neq 0$ and $\Phi = 0$) with off-diagonal long-range order (phase coherence), (b) supersolid ($\phi \neq 0$ and $\Phi = 0$) with coexisting diagonal long-range order (periodic density modulation) and phase coherence, (c) Mott insulator ($\phi = 0$ and $\Phi = 0$) with zero mean-photon number in the cavity mode, and (d) checkerboard solid ($\phi = 0$ and $\Phi = 0$) with diagonal long-range order and finite mean-photon number in the cavity mode. Let us now discuss the underlying mechanism for the buildup of the self-organized phases. The excitation of the cavity mode is a collective effect due to all the atoms in the cavity and depends on the total particle number; i.e., the more atoms are in the cavity, the more photons will be coherently scattered into the cavity mode, and the easier the checkerboard pattern of the density distribution can be formed. In the absence of induced long-range interactions, there are two possible phases for strongly interacting bosonic gases in an optical lattice: superfluid and Mott insulator. The low-lying excitations of the superfluid phase are gapless sound modes which can be easily excited [24], while the lowest excitations of the Mott insulator are gapped particle-hole pairs with an energy gap of order U [25]. These different excitation properties, which can be detected via Bragg spectroscopy [15,24], strongly influence the buildup of the self-organized phases. As can be seen from the blue curve in Fig. 2, the order parameter Φ becomes finite with increasing total particle number, and decreases to zero again in the vicinity of the Mott insulator. With further increase of the filling $n > 1$, the checkerboard supersolid phase appears again. Interestingly, there is also a checkerboard solid phase emerging at $n = 1.5$, since for larger particle number more photons are scattered into the cavity mode, and the resulting standing wave in the cavity direction suppresses tunneling of atoms and therefore superfluidity. Interestingly, we observe a maximum of the order parameter Φ at finite temperature due to the competition between superfluid and checkerboard order. All four phases can be detected experimentally by combining time-of-flight measurements and the detection of photons leaking from the cavity [8].

We have so far studied the homogeneous case, but in real experiments the external trap induces inhomogeneity and a resulting coexistence of superfluid, Mott insulator, supersolid, and checkerboard solid. We will now investigate the effect of inhomogeneity on the buildup of self-organized phases of the BEC-cavity system, and answer the question of how the different phases shown in Fig. 2 will manifest themselves in the experiment. In contrast to the situation with pure contact interactions, we find that the properties of the BEC in the optical cavity are strongly influenced by the trapping potential, due to cavity-mediated long-range interactions which are self-consistently determined by the density distribution of the whole system. Here we consider a $N_{lat} = 32 \times 32$ lattice with harmonic trap strength $V_{trap} = 0.003E_R$. All other parameters are chosen as in Fig. 2. In Fig. 3 we show the resulting density (upper panels) and superfluid order parameter distributions (lower panels) in real space for different total particle numbers. In general, the larger the total particle number, the more photons are scattered into the cavity mode, and thus the easier the system can form the self-organized phase. We observe that at $N_{tot} = 139$, there is almost no checkerboard phase region, as visible in panel (a). At $N_{tot} = 167$, the supersolid phase can be clearly observed in the center of the trap, since with increasing N_{tot} the superfluid core expands at the trap center and hence more photons are scattered into the cavity mode. From Fig. 2, we expect that the self-organized phase will disappear again when the number of particles increases to a value at which a Mott gap arises in the center of the trap, which is clearly visible in panel (c) at $N_{tot} = 184$. After further increase of the particle number to $N_{tot} = 220$, the checkerboard order reappears again. Moreover, we observe that a checkerboard solid core with average filling $n = 0.5$ builds up, indicating that the
self-organized phases can be detected by combining time-of-flight measurements and the detection of photons leaking from the cavity [8], while the coexistence of different phases in the presence of an external trap could be directly observed by quantum gas microscopy with single-site resolution [26–28].

In conclusion, we have investigated self-organized phases (supersolid and checkerboard solid) of both homogeneous and trapped ultracold Bose gases coupled to a high-finesse optical cavity. We have found that these phases are robust against strong on-site interactions at zero temperature, where the self-organization phase transition is solely driven by quantum fluctuations. We observe that thermal fluctuations can enhance the buildup of self-organized phases at finite but low temperature. In the presence of an external harmonic trap, the coexistence of superfluid, Mott-insulating, supersolid, and checkerboard solid domains is observed. We find the buildup of these self-organized phases to be strongly influenced by an external trap, due to the density dependence of scattering between pump laser and cavity mode by atoms in the cavity. Self-organized phases can be detected by combining time-of-flight measurements and the detection of photons leaking from the cavity [8], while the coexistence of different phases in the presence of an external trap could be directly observed by quantum gas microscopy with single-site resolution [26–28].

We acknowledge useful discussions with A. Hemmerich and R. Mottl. This work was supported by the China Scholarship Fund (Y.L.), and by the Deutsche Forschungsgemeinschaft (DFG) via SFB-TR 49 and the DIP project HO 2407/5-1. W.H. acknowledges the hospitality of KITP Santa Barbara, where this research was supported in part by the National Science Foundation under Grant No. PHY05-25915.

[17] Here we choose the tight confinement $V_0 = 30 E_R$.